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Abstract. We introduce both for modules and rings classes of elements that

are strongly connected to commutativity classes as defined in [1] [M. Abdi and

A. G. Leroy, Graphs of commutatively closed sets, Linear Multilinear Algebra,
2021] and [2] [D. Alghazzawi and A. G. Leroy, Commutatively closed sets in

rings, Comm. Algebra 47 (2019), no. 4, 1629–1641]. We define a graph

structure on the classes leading to a notion of distance for elements of a class.
Examples are presented all along the paper, showing the interest of the notions.

1. Introduction and notations

This paper is essentially concerned with notions around factorizations in general
noncommutative rings. The starting points for our considerations were the papers
[1] and [2], the definition of symmetric rings that first appears in J. Lambek [11],
and the usual UFD notions (cf. [5]).

While considering uniqueness of the factorization of an element a in a ring R, it
is natural to attach to a all the elements of R that can be obtained by permuting
the factors in factorizations of a. It is thus natural to consider the set

{b ∈ R | ∃n ∈ N,∃(a1, . . . , an) ∈ Rn, with a = a1 · · · an and b = aσ(1) · · · aσ(n)},

where σ ∈ Sn . This set will be denoted {̂a}1. If b ∈ {̂a}1, we will write b∼̂1a.
Continuing this process we may attach to an element a ∈ R its symmetric closure

{̂a} defined by

{̂a} = {x ∈ R | ∃l ∈ N, b1, . . . , bl ∈ R with a∼̂1b1∼̂1b2∼̂1 · · · ∼̂1bl = x}.

Of course, when the ring R is commutative, we have {̂a} = {a}. We will see that
the symmetric closure admits another construction. This construction is strongly
connected to the notion of symmetric rings that was introduced by Lambek ([11]).

In general, {̂a} measures the “local” noncommutativity of R. The two ways of
constructing the symmetric closure give two distances inside the symmetric closure
of an element offering two ways of measuring this “local” noncommutativity of the
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ring R. This naturally leads to the introduction of the diameter of the garphs. Let
us now briefly describe the content of the sections.

We start with definitions based on modules, in Section 2. Factorizations of an
element m in a module MR are based on the notion of divisibility of m by elements

of R (cf. [10], P. 70). The closure {̂m} of an element m ∈ MR is defined (cf.
Definitions 2.1). The derived group U(R)′ of the unit group of the base ring R
appears to be an essential tool. Special attention is devoted to the case of cyclic
modules and to the class of atoms of the module.

In Section 3, we consider two different factorization chains attached to an element
of a ring R. The closure notions corresponding to these factorization chains are in
fact the same. This closure operation leads to a topology on R, and hence we obtain
two ways to analyze this topology. We give a description of these classes in different
rings. We also remark some relations with the commutative closure introduced in
[2]. Among others, we compute the class of the identity for Dedekind-finite rings

and show that {̂0} is equal to the derived group U(R)′ of the unit group U(R) of
the ring R. Using the Dieudonné determinant we describe all the classes of the ring
of matrices over a division ring and, more generally, over an Artinian semisimple
ring.

In the last section of the paper, we define a graph structure on each symmetry
class. Two notions of distances are defined in these graphs. These distances and
the diameters of the graphs are compared. The case of matrices over division rings
is studied. It offers connections between our distances and subject such as the
number of multiplicative commutators needed to express an element of SLn(D),
the number of idempotents that appear in the expression of a singular matrix as
product of idempotent matrices and the number of conjugates necessary to express
a singular matrix in terms of conjugates of another singular matrix of higher rank.
Once again this part is largely influenced by the results obtained in [1] and [2].

Throughout this paper, the symbol N stands for the positive integers. In ad-
dition, we assume that all rings are unitary. For a ring R, U(R) and U(R)′ will
denote the group of units of R and its derived group, respectively. The set of nilpo-
tent elements of a ring R will be denoted by N(R). In addition, the notation ⌈x⌉
denotes the ceiling function of a real number x, which is the least integer greater
than or equal to x. If D is a division ring and n ∈ N, the Dieudonné determinant
of a matrix A ∈ Mn(D) will be denoted as Det(A).

2. Symmetric closure of modules

We will decompose an R-module into subsets that correspond to equivalence
classes of an equivalence relation and are strongly related to the factorization in
the ring R and the structure of the module. This will lead to a distance between
elements in these classes. The main definition that follows is inspired by the notion
of symmetric rings.

Definitions 2.1. Let M be a right R-module. Two elements m,n ∈ M are sym-
metrically connected if there exist m′ ∈ M and a, b ∈ R such that m = m′ab and

n = m′ba. We denote this situation by m
1∼ n.

Two elements m,n ∈ M are symmetrically related if there exists a finite chain

of symmetrically connected elements m = m0
1∼ m1

1∼ . . .
1∼ ml = n. We will write

m ∼ n when m and n are symmetrically related.
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For an element m ∈ M , we put {̂m} := {n ∈ M | n ∼ m}, and we say that an

element m ∈ M is symmetrically closed when {̂m} = {m}.

We first give some concrete examples.

Examples 2.2. (1) If R is a commutative ring, then two elements of a module
MR are symmetrically connected if and only if they are equal.

(2) If M = RR, then {̂0} = {0} if and only if the ring R is symmetric. These
kind of rings were introduced by J. Lambek in [11].

(3) If D is a noncommutative division ring and two nonzero elements x, y ∈ D
are symmetrically connected, then x = x′uv and y = x′vu so that we
get y = x′uvv−1u−1vu = x[v−1, u−1], where [u−1, v−1] = u−1v−1uv is a
multiplicative commutator. We will generalize this example later in the
next proposition.

(4) If m ∈ MR, then we always have m(U(R))′ ⊆ {̂m}; indeed, if u, v ∈ U(R),

then m[u, v] = muvu−1v−1 1∼ muvv−1u−1 = m. This easily yields the
desired inclusion.

In order to determine the closure of an element m in a module M , we need to
write m as a product m = m′r for some r ∈ R. Notice that in this case we obtain
that rann(r) := {s ∈ R | rs = 0} ⊆ ann(m) = {x ∈ R | mx = 0}. This leads to the
following definition:

Definition 2.3. Let m be a nonzero element in a module MR. We say that r divides
m (or that m is divisible by r) if rann(r) ⊆ ann(m) and there exists m′ ∈ M such
that m = m′r.

A module MR is divisible if for any m ∈ M and any r ∈ R such that rann(r) ⊆
ann(m), r divides m.

We will say that an element m ∈ M is an atom if the only r ∈ R that divides m
are the invertible elements of R, i.e., the elements of U(R).

For an element m ∈ MR, we introduce the following notations:

DivM (m) = {m′ ∈ M | m ∈ m′R},
and

DivR(m) = {r ∈ R | ∃m′ ∈ DivM (m) : m = m′r}.
Let us recall that for an element a ∈ R, we denote by {a} the commutative

closure of a. To define it, we first consider {a}1 = {xy | yx = a}. We then define,

for any i ≥ 1, {a}i+1 = {xy | yx ∈ {a}i}, and finally {a} =
⋃

l≥1{a}l. This notion
has been studied in [1] and [2].

Proposition 2.4. (i) The relation ∼ on a module M is an equivalence relation
on M .

(ii) Let VD be a vector space over a noncommutative division ring D. Two
vectors v, w ∈ V are symmetrically related if and only if w ∈ v(D∗)′, where
(D∗)′ is the derived group of the multiplicative group D \ {0}.

(iii) If M = mR is a cyclic module, then

DivR(m) = {r ∈ R | ∃s ∈ R : 1− sr ∈ annR(m)}.
(iv) If r ∈ DivR(m) and n ∈ DivM (m) are such that m = nr, then we have

n+ annM (r) ⊆ DivM (m), where annM (r) = {p ∈ M | pr = 0}.
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(v) If an element m ∈ M is divisible by r ∈ R, then m = nr and n{̂r} ⊆ {̂m}.
(vi) If m,n ∈ MR be such that there exists an element x ∈ U(R)′ such that

m = nx, then m ∼ n. So that we have m(U(R))′ ⊆ {̂m}.

Proof. (i) Reflexivity is due to the fact that 1 ∈ R. The symmetry of
1∼ is straight-

forward, and the symmetry of ∼ follows. The transitive closure of the relation
1∼

is exactly the relation ∼.
(ii) Suppose that v = v′st and w = v′ts for some v′ ∈ V and s, t ∈ D \ {0}.

Then w = v′ts = v′st[t−1, s−1] = v[t−1, s−1], where [t−1, s−1] = t−1s−1ts is the
multiplicative commutator. This leads quickly to the fact that two vectors v, w ∈ V
are symmetrically related if and only if w ∈ v(D∗)′, where (D∗)′ stands for the
derived group of the multiplicative group of D∗.

(iii) Let r ∈ DivR(m) and m′ ∈ M be such that m = m′r. Since M = mR,
there exists s ∈ R such that m′ = ms, and we have m = m′r = msr so that
1 − sr ∈ annR(m). Conversely, if 1 − sr ∈ annR(m), then m = msr = m′r for
m′ = ms, and hence r ∈ DivR(m).

(iv) We have m = nr and, for any m′ ∈ annM (r), we also have (n + m′)r =
nr +m′r = nr = m so that n+m′ ∈ DivM (m).

(v) Let s ∈ {̂r}. We want to show that ns ∈ {̂m}. Clearly, it is enough

to do this for elements s such that s
1∼ r. So, let us suppose that there exist

x, y, z ∈ R such that r = xyz and s = xzy. Then we have m = nr = nxyz and

ns = nxzy
1∼ nxyz = m, showing that ns ∈ {̂m}.

(vi) We first remark that if there exist u, v ∈ U(R) such that m = n[u, v], then

m = nuvu−1v−1 1∼ nuvv−1u−1 = n. Hence, if two elements of MR differs by a
commutator, then they are symmetrically related. This yields the proof since, by
definition, the derived group is generated by multiplicative commutators. □

As a consequence of statement (v) above, we get the following corollary.

Corollary 2.5. Let m ∈ MR. Then we have⋃
(m′,r)∈M×R, where m=m′r

m′{̂r} ⊆ {̂m}.

Another interesting corollary is based on statement (vi) in Proposition 2.4.

Corollary 2.6. If there exists a module M and a torsion-free element m ∈ M such

that {̂m} = {m}, then the invertible elements of R are central.

Proof. Thanks to Proposition 2.4(vi), we have mU(R)′ ⊆ {̂m} = {m}, and hence
U(R)′ = {1}, as required. □

Examples 2.7. (1) Let F be a field and consider, for n ≥ 1, the row space M = Fn

as a right module over the ring of matrices Mn(F ). For any two nonzero vectors
u, v ∈ Fn there always exists a matrix E ∈ SLn(F ) such that u = Ev. Since E
is the derived group of GLn(F ) (except when F = F2 and n = 2), we deduce that
any two nonzero vectors from Fn are always in the same class, i.e., u ∼ v for any
u, v ∈ Fn \ {0}.

(2) The equality in the previous corollary is not true as it can be seen while

computing the symmetric class of zero in the ring R = k⟨X,Y ⟩
(XY ) , where k is a field

(note that the invertible elements of R are the nonzero elements of k).
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Remarks 2.8. (1) If r ∈ R divides m ∈ M , say m = m′r for some m′ ∈ M ,
then the elements of M that are divible by r are exactly those of the form
m′ + annM (r). This set will be written as [mr ].

(2) If m ∈ M and x ∈ ann(m), then m(1 − x) = m, and we conclude that

ms ∈ {̂m} for any s
1∼ 1− x.

Both the structure of M as a module and the structure of the ring R have an
impact on the classes. For the influence of the module, let us examine the case of
cyclic modules.

Proposition 2.9. Let M = mR be a cyclic module. Then for any r, s ∈ R, we

have mr
1∼ ms if and only if there exist x, y ∈ R such that x

1∼ y and m(r − x) =
m(s− y) = 0.

Proof. Suppose that mr
1∼ ms. Then there exist m′ ∈ M and p, q ∈ R such

that mr = m′pq and ms = m′qp. Since M = mR, there exists l ∈ R such that

m′ = ml. Putting x := lpq and y := lqp, we get x
1∼ y, mr = mlpq = mx, and

ms = mlqp = my. Retracing our steps, we obtain the converse statement. □

The structure of the ring R is also important while computing the symmetric
classes of an element from a module. Indeed, we have already remaked that the
derived group u(R)′ of the group of invertible elements of R was crucial (cf. Propo-
sition 2.4). To show further this influence, we consider the case of a modules MR

over a (von Neumann) regular ring R. Recall that an element r in a ring R is
called regular if there exists x in R such that r = rxr. We denote the set of regular
elements by Reg(R). The ring R is (von Neumann) regular if Reg(R) = R.

Lemma 2.10. Let m ∈ MR be a nonzero element in an R-module MR and r ∈
Reg(R) such that rann(r) ⊆ ann(m). Then r divides m.

Proof. Since r ∈ Reg(R), there exists x ∈ R such that r = rxr, and hence 1−xr ∈
rann(r) ⊆ ann(m). This gives m = mxr, and so m = m′r for m′ = mx. This
completes the proof. □

This immediately leads to the following corollary.

Corollary 2.11. Let m ∈ MR be a nonzero element of a right R-module. Suppose

r ∈ Reg(R) is such that rann(r) ⊆ ann(m). Then mx{̂r} ⊆ {̂m}, where x is any
quasi inverse of r, i.e., we have r = rxr.

Of course, any invertible element r ∈ U(R) is regular, and hence as a special case

of the above corollary we deduce that, for any m ∈ M and u ∈ U(R), mu{̂u−1} ⊆
{̂m}.

We say that an element m ∈ MR is an atom if the only elements r ∈ R dividing
m are the units elements of R. For atoms we have the following result.

Corollary 2.12. If p ∈ M is an atom, then we have p(U(R))′ = {̂p}.

Proof. Thanks to Example 2.2(4), we know that p(U(R))′ ⊆ {̂p}. On the other

hand, if y
1∼ p, then we derive that there exist s, t, p′ ∈ R such that y = p′st and

p = p′ts. Since the only divisors of p are invertible elements, we get y = p′st =

p[s−1, t−1]. This implies that {̂p} ⊆ p(U(R))′, and the proof is over. □
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Of course, if the base ring R of the module MR is a commutative ring R, every
element of M is commutatively closed, and hence any element of m ∈ M satisfies

m(U(R))′ = {̂m}. In particular, if MR = RR, the statement of the corollary is not
a characterization of atoms.

3. Symmetric groups and factorizations

Let us start this section with a list of definitions and notations that will be useful.

Definitions 3.1. Let R be a ring with a unity 1 = 1R and a, b ∈ R. We write:

(i) (a) a
c∼1 b if there exist x, y ∈ R such that a = xy and b = yx.

(b) a
∗∼1 b if there exist x, y, z ∈ R such that a = xyz and b = xzy.

(c) a∼̂1b if there exist n ∈ N, x1, x2, . . . , xn ∈ R and π ∈ Sn such that
a = x1x2 · · ·xn and b = xπ(1)xπ(2) · · ·xπ(n).

(ii) For s ∈ {c, ∗,∧} we define:

(a) a
s∼l b if there exist x1, x2, . . . , xl ∈ R such that

a
s∼1 x1

s∼1 x2
s∼1 · · · s∼1 xl = b.

(b) a
s∼ b if there exists l ∈ N such that a

s∼l b.

(c) {a}s = {b ∈ R | a s∼ b}. We also write {a} for {a}c and {̂a} for {a}∧.

The relation
c∼ was studied in [1] and [2].

Lemma 3.2. Let a, b be elements in a unital ring R. Then

(i) a∼̂b if and only if a
∗∼ b. Moreover, ∼̂ is an equivalence relation on R.

(ii) For any a ∈ R, we have
⋃

l≥1{b | a∼̂lb} = {̂a}.
(iii) If a∼̂1a

′ and b∼̂1b
′, then aa′∼̂1bb

′.

Proof. (i) Suppose first that a
∗∼ b. Then b is symmetrically related to a and there

exists a sequence of elements a = a0, . . . , al = b in R such that a = a0
∗∼1 a1

∗∼1

a2
∗∼1 . . .

∗∼1 al = b. It is clear that, for x, y ∈ R, x
∗∼1 y implies that x∼̂1y. This

gives that a∼̂b, as required.
For the converse implication, it is sufficient to prove that if a∼̂1b, then b is

symmetrically related to a. To do this, assume we have a = a1a2 · · · an, π ∈ Sn,
and b = aπ(1)aπ(2) · · · aπ(n). Since π is a product of transpositions, we see that
it is enough to show for an arbitrary transposition τ we have aτ(1)aτ(2) · · · aτ(n)
is symmetrically related to a. Write τ = (ij) for 1 ≤ i < j ≤ n. We thus get
successively:

a = a1 · · · ai · · · aj · · · an
∗∼1 a1 · · · ai−1ajaj+1 · · · anai · · · aj−1

∗∼1 a1 · · · ai−1ajai · · · aj−1aj+1 · · · an
∗∼1 a1 · · · ai−1ajai+1 · · · aj−1aj+1 · · · anai
∗∼1 a1 · · · ai−1ajai+1 · · · aj−1aiaj+1 · · · an
= aτ(1)aτ(2) · · · aτ(n).

This yields the conclusion.
The fact that ∼̂ is an equivalence is a direct consequence of the fact that ∼ is an
equivalence relation (cf. Proposition 2.4).
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(ii) The inclusion
⋃

l≥1{b | a∼̂lb} ⊆ {̂a} is a direct consequence of the statement

(i) above. The reverse inclusion is routine since a
∗∼1 b implies that a∼̂1b.

(iii) Assume that a∼̂1a
′ and b∼̂1b

′. This implies that there exist n,m ∈ N,
π ∈ Sn, σ ∈ Sm, a1, . . . , an ∈ R, and b1, . . . , bm ∈ R such that a = a1 · · · an,
a′ = aπ(1) · · · aπ(n), b = b1 · · · bm, and b′ = bσ(1) · · · bσ(m). Define δ ∈ Sn+m is given
by δ(i) := π(i) for all i = 1, . . . , n, and δ(i) := σ(i− n) for all i = n+1, . . . , n+m.
We thus obtain ab = a1 · · · anb1 · · · bm∼̂1aδ(1) · · · aδ(n)bδ(n+1) · · · bδ(n+m) = a′b′, and
the proof is done. □

Definition 3.3. Let S be a subset of a ring R. We define the symmetric closure

of S as Ŝ =
⋃

s∈S {̂s}.

It is worth noticing that for an element x ∈ R, the symmetric closure {̂x} is the
equivalence class of x corresponding to the equivalence relation ∼̂ defined on R.

Definition 3.4. Let T be a subset of a ring R. We define recursively a collection
of subsets Ti ⊆ R, i ≥ 0, containing T as follows: T0 = T and for any i ≥ 0,

Ti+1 = {x ∈ R | ∃ℓ ∃a1, . . . , aℓ ∈ R, ∃π ∈ Sℓ with

x = a1 · · · aℓ and aπ(1) · · · aπ(ℓ) ∈ Ti}.

It is routine to see that T̂ =
⋃

i≥0 Ti.

Lemma 3.5. Assume that T is a non-empty subset of a ring R. Then the following
statements hold:

(i) The chain Ti, where i ≥ 0, is ascending.
(ii) For all n,m ∈ N, we have (Tn)m = Tn+m. In addition, if Tn = Tn+1, then

Tn = Tn+k for any k ≥ 0, and also T̂ = Tn.

(iii) T̂ is symmetrically closed, that is,
̂̂
T = T̂ .

Proof. (i) Fix i ≥ 0, and pick an arbitrary element x in Ti. Let x = a1 · · · aℓ,
where a1, . . . , aℓ ∈ R. Then by considering π = id, where id denotes the identity
permutation in Sℓ, we obtain x ∈ Ti+1. Hence, Ti ⊆ Ti+1 for all i ≥ 0.

(ii) We prove this claim by using induction on m. Let m = 1. It follows readily
from the definition that

(Tn)1 ={x ∈ R | ∃ℓ ∃a1, . . . , aℓ ∈ R, ∃π ∈ Sℓ with

x = a1 · · · aℓ and aπ(1) · · · aπ(ℓ) ∈ Tn}
=Tn+1.

Hence, the claim holds for m = 1. Now, suppose, inductively, that m > 0 and that
the result has been shown for m, that is to say, (Tn)m = Tn+m. Once again, one
can conclude rapidly from the definition that

(Tn)m+1 ={x ∈ R | ∃ℓ ∃a1, . . . , aℓ ∈ R, ∃π ∈ Sℓ with

x = a1 · · · aℓ and aπ(1) · · · aπ(ℓ) ∈ (Tn)m}
={x ∈ R | ∃ℓ ∃a1, . . . , aℓ ∈ R, ∃π ∈ Sℓ with

x = a1 · · · aℓ and aπ(1) · · · aπ(ℓ) ∈ Tn+m}
=Tn+m+1.



8 A. G. LEROY AND M. NASERNEJAD

This completes the inductive step, and hence the claim has been proven by induc-
tion. The last assertion is an immediate consequence of the first assertion and part
(i).

(iii) Since T̂ ⊆ ̂̂
T , it is enough to show the reverse inclusion. To do this, take an

arbitrary element x in
̂̂
T . This implies that x ∈ {̂t} for some t ∈ T̂ , and so t ∈ {̂s}

for some s ∈ T . We thus get x∼̂t∼̂s, and hence x ∈ {̂s} ⊆ T̂ . This finishes the
proof. □

Recall that for a subset T of a ring R, we define r(T ) = {x ∈ R | Tx = 0},
l(T ) = {x ∈ R | xT = 0}, r(a) = {x ∈ R | ax = 0}, and l(a) = {x ∈ R | xa = 0}.

The next proposition specifies some particular subsets of the closure of T̂ .

Proposition 3.6. Assume that T is a subset of a ring R. Then the following
statements hold:

(i) TU = {utu−1 | u ∈ U(R), t ∈ T} ⊆ T1.
(ii) For all n ≥ 1, we have (1 + r(T ))nT ∪ T (1 + l(T ))n ⊆ Tn.

Proof. (i) Let t ∈ T and u ∈ U(R). Since t = u−1ut ∈ T , this implies that
utu−1 ∈ T1. We therefore get TU ⊆ T1, as claimed.

(ii) We argue by induction on n. Let n = 1. Since r(T ) (respectively, l(T )), one
can check that T (1 + r(T )) ⊆ T (respectively, (1 + l(T ))T ⊆ T ). This implies that
(1 + r(T ))T ⊆ T1 (respectively, T (1 + l(T )) ⊆ T1). Hence, we get (1 + r(T ))T ∪
T (1 + l(T )) ⊆ T1. Now, suppose, inductively, that n > 0 and that the result
has been shown for n, that is to say, (1 + r(T ))nT ∪ T (1 + l(T ))n ⊆ Tn. This
yields that (1 + r(T ))nT ⊆ Tn (respectively, T (1 + l(T ))n ⊆ Tn). Accordingly, one
has (1 + r(T ))nT (1 + r(T )) ⊆ (1 + r(T ))nT ⊆ Tn (respectively, (1 + l(T ))T (1 +
l(T ))n ⊆ T (1+ l(T ))n ⊆ Tn). We thus obtain (1+r(T ))n+1T ⊆ Tn+1 (respectively,
T (1 + l(T ))n+1 ⊆ Tn+1). This completes the inductive step, and so the claim has
been proven by induction. □

Proposition 3.7. Let a be a symmetrically closed element in a ring R. Then the
following statements hold:

(i) r(a) = l(a).
(ii) Let e be an idempotent element in R such that ae = ea = a. Then a is a

symmetrically closed element in eRe.

Proof. (i) We first show that r(a) ⊆ l(a). To do this, let x ∈ r(a). Hence, a =
a(1+x). Since a is symmetrically closed, we get a = (1+x)a, and so xa = 0. This
implies that x ∈ l(a). Accordingly, r(a) ⊆ l(a). Conversely, consider an arbitrary
element x ∈ l(a). This gives that a = (1 + x)a. Similarly, one has a = a(1 + x),
and thus ax = 0. Consequently, x ∈ r(a). This yields that l(a) ⊆ r(a), as required.

(ii) This assertion is a direct consequence of the definitions. □

Proposition 3.8. Assume that T is a subset of a ring R. Then the following
statements hold:

(i) If T is symmetrically closed, then its complement R \ T is symmetrically
closed.

(ii) Any union (respectively, intersection) of symmetrically closed sets is sym-
metrically closed.
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(iii) The collection of symmetrically closed subsets defines a topology on the ring
R. For this topology, the open sets are also closed.

(iv) If A ⊆ B are two subsets of R, then Â ⊆ B̂.
(v) If Tλ ⊆ R, where λ ∈ Λ, are subsets of a ring R, then

(a) ∪λ∈ΛT̂λ = ∪̂λ∈ΛTλ.

(b) ∩̂λ∈ΛTλ ⊆ ∩λ∈ΛT̂λ.

Proof. (i) This is an obvious consequence of the fact that ∼̂ is an equivalence
relation (cf. Lemma 3.2(i)).

(ii) Let {Tλ}λ∈Λ be a collection of symmetrically closed sets in R. Select an
arbitrary element x in ∪λ∈ΛTλ. This implies that x ∈ Tλ for some λ ∈ Λ. since Tλ

is symmetrically closed, one has (Tλ)1 = Tλ. Hence, there exist a1, . . . , aℓ ∈ R and
π ∈ Sℓ with x = a1 · · · aℓ and aπ(1) · · · aπ(ℓ) ∈ Tλ. We thus have aπ(1) · · · aπ(ℓ) ∈
∪λ∈ΛTλ, and so x ∈ (∪λ∈ΛTλ)1. This yields that ∪λ∈ΛTλ ⊆ (∪λ∈ΛTλ)1. Based on
Lemma 3.5(ii), one can deduce that ∪λ∈ΛTλ is symmetrically closed. To show the
symmetrically closedness of ∩λ∈ΛTλ, one should consider part (i) and the fact that
∩λ∈ΛTλ = R \ (∪λ∈Λ(R \ Tλ)).

(iii) Since R itself is symmetrically closed, it follows from part (i) that the empty
set is also symmetrically closed. Now, the claim can be concluded from parts (i)
and (ii).

(iv) This assertion is an immediate consequence of the facts that Â =
⋃

a∈A {̂a}
and B̂ =

⋃
b∈B {̂b}.

(v) On account of Lemma 3.5(iii), for any λ ∈ Λ, T̂λ is symmetrically closed.

It follows now from part (ii) that ∪λ∈ΛT̂λ is symmetrically closed. Since, for any

λ ∈ Λ, Tλ ⊆ ∪λ∈ΛT̂λ, using part (iv) gives that ∪̂λ∈ΛTλ ⊆ ∪λ∈ΛT̂λ. Conversely, we

note that, for any λ ∈ Λ, parts (ii) and (iv) imply that T̂λ ⊆ ∪̂λ∈ΛTλ, and hence

∪λ∈ΛT̂λ ⊆ ∪̂λ∈ΛTλ. This proves (a).

Because, for any λ ∈ Λ, T̂λ is symmetrically closed, part (ii) yields that ∩λ∈ΛT̂λ

is symmetrically closed as well. Due to ∩λ∈ΛTλ ⊆ T̂λ for any λ ∈ Λ, using part (iv)

implies that ∩̂λ∈ΛTλ ⊆ ∩λ∈ΛT̂λ. This proves (b). □

Theorem 3.9. Assume that φ : R −→ W is a ring homomorphism. Then the
following statements hold:

(i) For any X ⊆ R, φ(X̂) ⊆ φ̂(X).

(ii) If φ is a ring isomorphism, then for any X ⊆ R, φ(X̂) = φ̂(X).
(iii) If T ⊆ W is symmetrically closed in W , then φ−1(T ) is symmetrically

closed in R.

Proof. (i) Since X̂ =
⋃

i≥0 Xi and φ̂(X) =
⋃

i≥0 φ(X)i, and in view of Lemma

3.5(i), it is sufficient for us to show that φ(X1) ⊆ φ(X)1. To do this, choose an
arbitrary element y ∈ φ(X1). Hence, y = φ(z) for some z ∈ X1. This yields that
there exist a1, . . . , aℓ ∈ R and π ∈ Sℓ with z = a1 · · · aℓ and aπ(1) · · · aπ(ℓ) ∈ X. We
thus get y = φ(z) = φ(a1) · · ·φ(aℓ) and φ(aπ(1)) · · ·φ(aπ(ℓ)) = φ(aπ(1) · · · aπ(ℓ)) ∈
φ(X). This gives rise to y ∈ φ(X)1, as required.

(ii) Due to Lemma 3.5(ii) and part (i), one has to demonstrate that φ(X)1 ⊆
φ(X1). For this purpose, let y ∈ φ(X)1. This implies that there exist a1, . . . , aℓ ∈
W and π ∈ Sℓ with y = a1 · · · aℓ and aπ(1) · · · aπ(ℓ) ∈ φ(X). Hence, aπ(1) · · · aπ(ℓ) =
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φ(z) for some z ∈ X. Because aπ(i) ∈ W , for i = 1, . . . , ℓ, and φ is surjective,
this yields that there exist r1, . . . , rℓ ∈ R such that aπ(i) = φ(ri) for i = 1, . . . , ℓ.
Consequently, we obtain φ(z) = aπ(1) · · · aπ(ℓ) = φ(r1 · · · rℓ). Since φ is injective,
one can derive that z = r1 · · · rℓ ∈ X. Hence, r1 · · · rℓ ∈ X1. Finally, we note that
y = φ(z) = φ(r1 · · · rℓ) ∈ φ(X1). This finishes our argument.

(iii) According to Lemma 3.5(ii), it is enough to verify that (φ−1(T ))1 ⊆ φ−1(T ).
Take an arbitrary element z in (φ−1(T ))1. This gives that there exist a1, . . . , aℓ ∈
R and π ∈ Sℓ with z = a1 · · · aℓ and aπ(1) · · · aπ(ℓ) ∈ φ−1(T ). We thus gain
φ(aπ(1)) · · ·φ(aπ(ℓ)) = φ(aπ(1) · · · aπ(ℓ)) ∈ T . On account of T ⊆ W is symmetri-
cally closed, this leads to φ(a1 · · · aℓ) = φ(a1) · · ·φ(aℓ) ∈ T . Accordingly, one has
z = a1 · · · aℓ ∈ φ−1(T ), and the proof is complete. □

We now collect a few properties in the following proposition. Recall that a
subset S of a ring R is multiplicatively closed whenever s1, s2 ∈ S, then s1s2 ∈ S
too. Following [1], let us recall for a, b ∈ R, we say dc(a, b) = n, also denoted by

a
c∼n b, if there exists x1, . . . , xn, y1, . . . , yn ∈ R such that

a = x1y1, y1x1 = x2y2, y2x2 = x3y3, . . . , yn−1xn−1 = xnyn, ynxn = b.

In addition, the commutative closure of a ∈ R is given by

{a} = {b ∈ R | ∃n ∈ N ∪ {0} with dc(a, b) = n}.

For S ⊂ R, we define S =
⋃

s∈S {s}.

Proposition 3.10. Let a and b be elements in a ring R, and S a subset of R.
Then the following statements hold:

(i) {a} ⊆ {̂a}.
(ii) Any symmetrically closed set is commutatively closed.

(iii) {̂ab} = {̂ba}.
(iv) a{b} ⊆ a{̂b} ⊆ {a}{̂b} ⊆ {̂a}{̂b} ⊆ {̂ab}.
(v) Let B denote 1− r(a), where r(a) = {x ∈ R | ax = 0} stands for the right

annihilator of the element a. Then {̂Ba} ⊆ {̂a}.
(vi) If S is a multiplicatively closed set, then Ŝ is multiplicatively closed as well.

Proof. (i) The first inclusion is clear since 1 ∈ R and 1.ab ∼̂1 1.ba.
(ii) This is a direct consequence of part (i) above.

(iii) We have ab ∈ {̂ba}, and hence {̂ab} ⊆ {̂ba}. A similar argument gives

{̂ba} ⊆ {̂ab}.
(iv) The inclusion {b} ⊆ {̂b} (cf. part (i) above) implies that a{b} ⊆ a{̂b} and

{a}{̂b} ⊆ {̂a}{̂b}. Similarly, the second inclusion follows from the fact that a ∈ {a}.
The last inclusion {̂a}{̂b} ⊆ {̂ab} is due to the fact that permuting the factors of
the first element, say a, of a product ab is also permuting a factorization of ab.

(v) This is due to the fact that {a} = aB, and hence Ba ⊆ {a} ⊆ {̂a}. We

therefore have {̂Ba} ⊆ {̂a}.
(vi) Let x, y ∈ Ŝ. Thus, we have elements s, t ∈ S such that x ∈ {̂s} and y ∈ {̂t}.

The fourth inclusion in part (iv) above then gives xy ∈ {̂s}{̂t} ⊆ {̂st}. Since S is

multiplicatively closed, this implies that xy ∈ Ŝ . □
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Definition 3.11. [2, Definition 2.1] An element a ∈ R is said to be commutatively

closed when {a} = {a}. If a, b ∈ R we say that b is a factor of a if there exist
elements c, d ∈ R such that a = cbd.

Proposition 3.12. Let R be a unital ring, and z ∈ R be a symmetrically closed
element. Then the following statements hold:

(i) The element z commutes with units.
(ii) If 2 is not a zerodivisor in R, then z commutes with idempotent elements.
(iii) The element z commutes with its factors.

Proof. The claim can be deduced from [2, Proposition 2.2] and Proposition 3.10(i).
□

Corollary 3.13. Let z ∈ R be a symmetrically closed element. Then the following
statements hold:

(i) If z is nilpotent, then RzR is a nilpotent ideal.
(ii) If z is not a right (or left) zerodivisor, then R is Dedekind-finite.

Proof. The assertion is an immediate consequence of [2, Corollary 2.3] and Propo-
sition 3.10(i). □

The definition below is sometimes useful especially while making explicit com-
putations. It is similar to the one given in Definition 3.4.

Definitions 3.14. Let S ⊂ R be a nonempty subset of R. We define, for s ∈
{c, ∗,∧},

Ss
n = {x ∈ R | ∃ x0 ∈ S such that x

s∼n x0 }.
In particular, for any s ∈ S, we have {s}∗ =

⋃
n≥0 {s}

∗
n.

Recall that a ring R is Dedekind-finite if, for any a, b ∈ R, we have ab = 1 implies
ba = 1. When the ring R is Dedekind-finite, we can describe the symmetric closure
of any subset S contained in R.

Proposition 3.15. Let S ⊆ R be a subset of a Dedekind-finite ring R. Then the
following statements hold:

(i) If S is a group, then Ŝ is a group as well.
(ii) {1}∗n is the set of products of at most n commutators.

(iii) The closed set {̂1} is the derived group U(R)′ of the group of units of R.

(iv) If S ⊆ U(R), then Ŝ = S(U(R))′.

Proof. (i) Since R is Dedekind-finite, any factor of an invertible element is also
invertible. The fact that S is a group then implies that the elements of S∗

1 are
invertible. Moreover, if x ∈ S∗

1 , there exists s ∈ S such that x∼̂1s, and hence
x−1∼̂1s

−1. Since S is a group, we thus get x−1 ∈ S∗
1 . Similarly, for any l ∈ N,

the elements of S∗
l are invertible with inverses in S∗

l . Let a, b ∈ Ŝ. So, there exists

l ∈ N such that a, b ∈ S∗
l , and since b−1 ∈ S∗

l ⊆ Ŝ, we get ab−1 ∈ Ŝ. This shows

that Ŝ is a group.
(ii) First remark that x and all the elements that appear in a path linking 1 and

x are invertible (in fact, {̂1} is a group). The result is thus clear since for invertible
elements a, b, c ∈ U(R), we have abc = acb[b−1, c−1].



12 A. G. LEROY AND M. NASERNEJAD

(iii) Clearly, {̂1} is a subgroup of U(R), and by part (ii) above, we get that in fact

{̂1} ⊆ U(R)′, the derived subgroup of U(R). On the other hand, any commutator
is an element of {1}∗1, and this yields the assertion.

(iv) In the light of Proposition 3.10(iv), we have S ⊆ S{̂1}. Because the elements
of S are invertible, we also get the reverse inclusion. □

Corollary 3.16. Let R be a ring. Then the following statements are equivalent:

(i) R is Dedekind-finite.

(ii) {1} = {1}.
(iii) {̂1} = U(R)′.

Moreover, when R is Dedekind-finite, we have for any a ∈ U(R), {̂a} = a{̂1}.

Proof. We know that the set {1} is commutatively closed (i.e., {1} = {1}) if and
only if R is Dedekind-finite. Thus, (i) and (ii) are equivalent. In addition, Propo-
sition 3.15(iii) gives the implication (i) ⇒ (iii). To finish the argument, one has
to show the implication (iii) ⇒ (i). To see this, let ab = 1, where a, b ∈ R. This

yields that ba ∈ {1}. Since {1} ⊆ {̂1} = U(R)′ ⊆ U(R), we obtain that ba ∈ U(R).
Now, by considering the fact that (ba)2 = ba, we get ba = 1. This means that R is
Dedekind-finite. □

Example 3.17. Let H denote the division ring of real quaternions. For x = a0 +
a1i+ a2j + a3k ∈ H we define N(x) = a20 + a21 + a23 + a23. Moreover, let Γ := {x ∈
H : N(x) = 1}. Then {̂1} = Γ.

Proof. In the light of [12, Proposition 1.3.5] and Corollary 3.16(iii), one can rapidly

conclude that {̂1} = U(H)′, and hence {̂1} = Γ. □

In a similar way, we can now look at the symmetric closure of {0} when R is

reversible, i.e., when {0} = {0}. Recall first that in any ring R, the set N(R)
of nilpotent elements is always commutatively closed. Of course, N(R) is not
symmetrically closed in general as we can see by considering the case of a matrix

ring R = Mn(k), n ≥ 2 over a field k. In fact, in this case, we have N̂(R) = {̂0} is
the set of all singular matrices (cf. Corollary 3.21).

We recall that a ring R is semi-commutative if for any a, b ∈ R we have that
ab = 0 implies aRb = 0. Furthermore, any reversible ring is semi-commutative.

Proposition 3.18. If R is semi-commutative, then N(R) is symmetrically closed.
In particular, this holds if R is reversible.

Proof. It is enough to show that, if a ∈ N(R) and b
∗∼1 a, then b ∈ N(R).

To do this, assume that a = xyz and b = xzy. Let also n ∈ N be such that
an = 0. Since R is semi-commutative, for any r1, r2, . . . , r3n ∈ R, we have
xr1yr2zr3xr4 · · · r3n−1zr3n = 0. Replacing r1+3l, r2+3l, r3+3l (l ≥ 0) by z, x, y
respectively, we conclude that b2n = 0. Accordingly, one has b ∈ N(R), as re-
quired. □

Recall that a ring R is said to be symmetric if and only if for any a, b, c ∈ R,
abc = 0 implies acb = 0.

Looking at the symmetric closure of {0} we easily get the following proposition:

Proposition 3.19. {̂0} = {0} if and only if R is symmetric.
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Proof. (⇒) Let abc = 0, where a, b, c ∈ R. Due to abc
∗∼1 acb, this leads to

acb ∈ {̂0}, and so acb ∈ {0}. Hence, acb = 0, that is, R is symmetric.
(⇐) We must show that {0}1 ⊆ {0} by virtue of Lemma 3.5(ii). To see this, pick

an arbitrary element z in {0}1. This says that there exist a1, . . . , aℓ ∈ R and π ∈ Sℓ

with z = a1 · · · aℓ and aπ(1) · · · aπ(ℓ) ∈ {0}. Hence, we get aπ(1) · · · aπ(ℓ) = 0. Since
R is symmetric, and considering the fact that π is a product of transpositions, we
can mimic the discussion which has been stated in Lemma 3.2(i). This gives rise
to z = a1 · · · aℓ = 0, and so z ∈ {0}, as required. □

The next theorem determines the symmetric classes in case of a matrix ring over
a division ring. Note that GLn(R) denotes the general linear group of non-singular
n× n matrices with entries in R.

Theorem 3.20. Let D be a division ring, n ∈ N, and A ∈ Mn(D). Also, let 1
denote the identity matrix. Then the following statements hold:

(i) {̂1} = GLn(D)′.

(ii) If A ∈ GLn(D), then Â = A{̂1}.
(iii) If A is singular, then Â = {̂0}.

Proof. (i) First note that the ring R = Mn(D) is Dedekind-finite. It follows now

from Corollary 3.16(iii) that {̂1} = GLn(D)′.
(ii) This assertion can be deduced from Proposition 3.15(iv).

(iii) We first show that Ê = {̂0} for any idempotent matrix E = E2 such that
rank(E) = r < n. The proof proceeds by induction on r. If r = 0, we have E = 0.
Suppose that the property is proven for idempotent matrices of rank 0 ≤ s < r
and consider an idempotent matrix E of rank r. Let us denote Fr the idempotent
matrix Fr = diag(Ir, 0n−r). There exists an invertible matrix P ∈ GLn(D) such

that PEP−1 = Fr. In particular, we have Ê = F̂r. If Q ∈ GLn(D) is the
permutation matrix associated to the transposition (r, r + 1), we get QFrQ

−1 is

the matrix diag(Ir−1, 0, 1, 0, . . . , 0), and hence Fr = F 2
r

∗∼1 FrQFrQ
−1 = Fr−1. We

thus gain Ê = F̂r = F̂r−1. The induction hypothesis then gives Ê = F̂r = F̂r−1 =

{̂0}, as claimed. Now, if A ∈ Mn(D) is a singular matrix, then we can write
A = E1E2 · · ·Er, where Ei = E2

i for i = 1, . . . , r (cf. [9]). Based on Proposition

3.10, we have 0 ∈ {̂0} = Ê1 · · · Êr ⊆ Â. Accordingly, one concludes that 0 ∈ Â,

and hence {̂0} = Â. This yields the desired result. □

In the next theorem, we will use the Dieudonné determinant. Recall that if D is

a division ring and n ∈ N, the Dieudonné determinant is a map GLn(D)
Det.−→ D∗

U(D)′

such that Det(AB) = Det(A)Det(B) and Det(In) = 1. The kernel of the map Det
is denoted as SLn(D), and is the subgroup of GLn(D) generated by the elementary
matrices. If A ∈ Mn(D) is singular, we put Det(A) := 0. If D is commutative, then
Det is the usual determinant for matrices with coefficients in a field. The interested
reader might consult [6] for more information.

Corollary 3.21. Let R = Mn(D) be a matrix ring over a division ring D. Then

for any A ∈ R, we have {̂A} = {B ∈ R | Det(B) = Det(A)}.

Proof. If B ∈ {̂A}, then there exist matrices A1, . . . , Al ∈ Mn(D) such that

A∼̂1A1∼̂1A2∼̂1 · · · ∼̂1Al = B.
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Hence, to show that Det(A) = Det(B), it is enough to show that if X,Y ∈ Mn(D)
are such that X∼̂1Y , then Det(X) = Det(Y ). Since the determinant is a multi-
plicative map, this is clear.

Conversely, suppose that A,B ∈ Mn(D) are such that Det(A) = Det(B). If
Det(A) = Det(B) ̸= 0, then both A and B are invertible and we have Det(AB−1) =
1. This means that AB−1 ∈ SLn(D), and hence we obtain AB−1 is a product

of multiplicative commutators. In particular, AB−1 ∈ {̂1}. Now, if Det(A) =

Det(B) = 0, then by Theorem 3.20(iii), we get {̂A} = {̂0} = {̂B}, as claimed. □

Lemma 3.22. Assume that R and S are two rings, and (r, s) ∈ R × S. Then

{̂(r, s)} = {̂r} × {̂s}.

Proof. Take an arbitrary element (x, y) in {̂(r, s)}. This yields that (x, y) ∈ {̂(r, s)}n
for some n ≥ 1. We thus have there exist elements

(r, s) = (x1, y1), (x2, y2), . . . , (xn, yn) = (x, y) ∈ R× S,

such that
(r, s) = (x1, y1)∼̂1(x2, y2)∼̂1 · · · ∼̂1(xn, yn) = (x, y).

This gives rise to r = x1∼̂1x2∼̂1 · · · ∼̂1xn = x and s = y1∼̂1y2∼̂1 · · · ∼̂1yn = y.

We therefore get (x, y) ∈ {̂r} × {̂s}. To establish the reverse inclusion, assume

that (x, y) ∈ {̂r} × {̂s}. Hence, one has x ∈ {̂r} and y ∈ {̂s}. We can conclude

that x ∈ {̂r}n and y ∈ {̂s}m for some n,m ∈ N. This implies that there exist
elements r = x1, x2, . . . , xn = x ∈ R and s = y1, y2, . . . , ym = y ∈ S such that
x1∼̂1x2∼̂1 · · · ∼̂1xn and y1∼̂1y2∼̂1 · · · ∼̂1ym. Without loss of generality, one may
assume that m ≥ n. We thus have the following

(r, s) =(x1, y1)∼̂1(x2, y2)∼̂1 · · · ∼̂1(xn, yn) = (x, yn)

∼̂1(x, yn+1)∼̂1 · · · ∼̂1(xn, ym) = (x, y).

Accordingly, we gain (x, y) ∈ {̂(r, s)}m, and hence (x, y) ∈ {̂(r, s)}, as claimed. □

We are now able to determine the symmetric closure of any elements of an
Artinian semisimple ring.

Theorem 3.23. Let R =
∏l

i=1 Mni
(Di) be an Artinian semisimple ring, where

Di’s are division rings. If A = (A1, A2, . . . , Al) ∈ R, then

Â = {B = (B1, B2, . . . , Bl) ∈ R | Det(Ai) = Det(Bi), i = 1, . . . , l}.

Proof. The proof is direct consequence of Lemma 3.22 and Corollary 3.21. □

4. Symmetrically closed graphs and their diameters

In this section, we define a graph structure on each symmetry class. Two notions
of distances are defined in these graphs. These distances and the diameters of the
graphs are compared. To accomplish this, we start with the following definitions.
In addition, we refer the reader to [4] for any definition and terminology concerning
graph theory.

Definitions 4.1. Let R be a unital ring R and s ∈ {c, ∗,∧}.
(1) The elements of a class determined by

s∼ can be seen as the set of vertices of

a graph. Two elements x, y in the same class are said to be adjacent if x
s∼1 y.
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(2) Let x, y ∈ R be such that x
s∼ y, we define ds(x, y) = min{n ∈ N | x s∼n y}.

We adopt the convention that ds(x, x) = 0. It is not hard to check that ds is a
distance. This distance corresponds to the minimal length of the paths between two

elements (vertices) in a class determined by
s∼.

(3) For a subset S of R, we define

diams(S) = sup{ds(x, y) | x, y ∈ S and x
s∼ y}.

Remarks 4.2. (1) As was proved in Lemma 3.2 the classes determined by
∗∼

and
∧∼ are the same. So the vertices of the graphs determined by these

relations are the same, but, of course, the paths are different.

(2) Lemma 3.2 also shows that if x, y ∈ {̂a}, then d∧(x, y) ≤ d∗(x, y).

(3) A class {̂a} is a connected graph for both
∗∼ and

∧∼.

(4) Since R is the disjoint union of the classes with respect to
∧∼ (or

∗∼), the
ring R itself can be considered as a graph. With this point of view we have,

for s ∈ {∧, ∗}, diams(R) = sup{diams({̂z}) | z ∈ R}.

In what follows, we collect some results which are related to above definitions.

Theorem 4.3. Let R be a unital ring. Then the following statements hold:

(i) If t ∈ {̂z}, then for any m ∈ N, tm ∈ {̂zm}.
(ii) A subset S of R is symmetrically closed and connected if and only if S = {̂z}

for some z ∈ R.

(iii) For any subset S of R, diam∧(S) ≤ diam∧(Ŝ) (respectively, diam∗(S) ≤
diam∗(Ŝ)).

Proof. (i) Let t ∈ {̂z}, and fix m ∈ N. This implies that t ∈ {̂z}n for some n ≥ 0.
If n = 0, then t = z and the result is clear. So suppose that n > 1 and there exist
elements z = x1, x2, . . . , xn = t such that x1∼̂1x2∼̂1 · · · ∼̂1xn. In view of Lemma
3.2(iii), one can conclude that zm = xm

1 ∼̂1x
m
2 ∼̂1 · · · ∼̂1x

m
n = tm. We therefore have

tm ∈ {̂zm}.
(ii) Since S is closed, it is a union of classes corresponding to the equivalence

relation ∼̂. Due to the fact that S is connected, S is in fact equal to a single class,

and for any z ∈ S, we have S = {̂z}.
(iii) This is clear since S ⊆ Ŝ □

Proposition 4.4. Let S be a subset of a ring R. Then the following statements
hold:

(i) diam∗(S) ≤ diamc(S). In particular, if diamc(S) (respectively, diam∗(S))
is finite (respectively, infinite), then diam∗(S) (respectively, diamc(S)) is
finite (respectively, infinite).

(ii) If R is a non-commutative Dedekind-finite, then diam∗(U(R)) = 1. In
particular, if D is a division ring, then diam∗(D) = 1.

Proof. (i) It follows from Proposition 3.10(i) that d∗(x, y) ≤ dc(x, y) for any x, y ∈
S. This leads immediately to diam∗(S) ≤ diamc(S).

(ii) By virtue of [1, Lemma 1.10], one has diamc(U(R)) = 1. Now, part (i)
implies that diam∗(U(R)) = 1. To prove the last claim, one can combine part (i)
and [1, Proposition 1.11]. □
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Proposition 4.5. Assume that z is an element in a ring R. If n ∈ N is the

minimal number such that {̂z} = {̂z}n, then n ≤ diam∧({̂z}) ≤ 2n.

Proof. Let x, y ∈ {̂z}. Hence, one obtains x, y ∈ {̂z}n. This gives that there
exist elements z = x1, x2, . . . , xn = x ∈ R and z = y1, y2, . . . , yn = y ∈ R such
that x1∼̂1x2∼̂1 · · · ∼̂1xn and y1∼̂1y2∼̂1 · · · ∼̂1yn. This means that d∧(x, z) ≤ n and
d∧(y, z) ≤ n. It follows now from the triangle inequality that

d∧(x, y) ≤ d∧(x, z) + d∧(z, y) ≤ 2n,

and so diam∧({̂z}) ≤ 2n. Since n is minimal, this implies that n ≤ diam∧({̂z}).
This completes the proof. □

Proposition 4.6. Let R and S be two rings. Also, let diam∧(R) = n and diam∧(S) =
m. Then diam∧(R× S) = max{n,m}.

In addition, a similar result holds replacing diam∧ by diam∗.

Proof. It follows from the definition that

diam∧(R× S) = sup{diam∧((̂r, s)) : (r, s) ∈ R× S},

where diam∧((̂r, s)) := sup{d∧((x1, y1), (x2, y2)) : (x1, y1), (x2, y2) ∈ {̂(r, s)}}.
Let diam∧(R × S) = diam∧(G(r,s)), where (r, s) ∈ R × S. Hence, there exist el-

ements (x1, y1), (x2, y2) ∈ {̂(r, s)} such that diam∧((̂r, s)) := d∧((x1, y1), (x2, y2)).

On account of Lemma 3.22, one can derive that x1, x2 ∈ {̂r} and y1, y2 ∈ {̂s}.
One can deduce from the assumptions diam∧(R) = n and diam∧(S) = m that
d∧(x1, x2) := t ≤ n and d∧(y1, y2) := k ≤ m. Accordingly, there exist ele-
ments x1 = u1, u2, . . . , ut = x2 ∈ R and y1 = v1, v2, . . . , vk = y2 ∈ S such that
u1∼̂1u2∼̂1 · · · ∼̂1ut and v1∼̂1v2∼̂1 · · · ∼̂1vk. Without loss of generality, one may
assume that k ≥ t. This leads to the following

(x1, y1) =(u1, v1)∼̂1(u2, v2)∼̂1 · · · ∼̂1(ut, vt) = (x2, vt)

∼̂1(x2, vt+1)∼̂1 · · · ∼̂1(x2, vk) = (x2, y2).

Therefore, one derives that d∧((x1, y1), (x2, y2)) ≤ max{n,m}. This implies that
diam∧(R× S) = max{n,m}, as desired. □

Theorem 4.7. Let D be a division ring and n ∈ N. Then diam∧(Mn(D)) ≤ 2.

Proof. Let A,B ∈ Mn(D) be matrices such that B ∈ Â. According to Corollary
3.21, we derive that Det(A) = Det(B). Here, one may consider the following cases:

Case 1. A is invertible. This implies that B is invertible. It follows from
Det(AB−1) = 1 that A = CB for some C ∈ SLn(D). Since C is a product of
commutators, we get C∼̂1In. This immediately gives that A∼̂1B.

Case 2. A is singular. Then A is a product of idempotent matrices. Any
idempotent matrix E ∈ Mn(D) is similar to any diagonal matrix having only 0 and
1 on the diagonal with the number of 1’s is equal to the rank of E. So, for any
1 ≤ i ≤ n, there is an invertible matrix Pi such that PiEP−1

i is a diagonal matrix

with a zero on the (i, i) entry, and we thus have P1EP−1
1 P2EP−1

2 · · ·PnEP−1
n = 0.

We can thus write

E = En∼̂1P1EP−1
1 P2EP−1

2 · · ·PnEP−1
n = 0.
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Since A is a product of idempotent matrices, we get that A∼̂10 and similarly for
the singular matrix B. This yields the proof. □

Proposition 4.6 and Theorem 4.7 give the following theorem.

Theorem 4.8. Let R be an Artinian semisimple ring. Then diam∧(R) ≤ 2.

In the case of a matrix ring over a field we have a better bound:

Theorem 4.9. Let F be a field and n ∈ N. Then diam∧(Mn(F )) = 1.

Proof. We have seen in the proof of Theorem 4.7 that in the case when two matrices
A,B are invertible, we have A∼̂1B. So let us consider the case when two matrices
A and B are singular. Without loss of generality, we may assume that rank(A) ≤
rank(B). In this case, the matrix A can be written as products of conjugates of B
(cf. [3]), and we obtain that there exist k ∈ N and P1, . . . , Pk ∈ GLn(F ) such that
A = P1BP−1

1 · · ·PkBP−1
k . This immediately gives that A∼̂1B, as desired. □

Turning our attention to the diam∗, we can express the distance d∗ between two
invertible matrices as follows.

Proposition 4.10. Let n ∈ N, and let D be a division ring such that n ̸= 2

and D ̸= F2. Let A,B ∈ GLn(D) be two matrices such that B ∈ {̂A}. Then
AB−1 ∈ SLn(D) and d∗(A,B) is the minimal number of commutators required to
express AB−1 as products of commutators in GLn(D).

Proof. We have seen in Theorem 3.20 that B ∈ {̂A} implies AB−1 ∈ GLn(D)′, the
derived subgroup of GLn(D). Our assumption implies that GLn(D)′ = SLn(D) (cf.
[6, Theorem 4 on page 138]). Assume that d∗(A,B) = ℓ and that we have a chain

A = A0
∗∼1 A1

∗∼1 . . .
∗∼1 Aℓ = B We thus get, for any 0 ≤ i ≤ ℓ − 1, invertible

matrices Xi, Yi, Zi ∈ GLn(D) such that A = A0 = X0Y0Z0, A1 = X0Z0Y0 =
X1Y1Z1, A2 = X1Z1Y1 = X2Y2Z2, . . . , Aℓ = Xℓ−1Zℓ−1Yℓ−1 = B. From this, we
deduce that B = Aℓ = Aℓ−1[Z

−1
ℓ−1, Y

−1
ℓ−1] and Aℓ−1 = Aℓ−2[Z

−1
ℓ−2, Y

−1
ℓ−2]. Continuing

this process, we conclude the following equality

B = A[Z−1
0 , Y −1

0 ][Z−1
1 , Y −1

1 ] · · · [Z−1
ℓ−1, Y

−1
ℓ−1].

Conversely, if such an equality holds, we can deduce immediately that d∗(A,B) ≤ ℓ.
This finishes the proof. □

On account of Proposition 4.10, we find that diam∗(SLn(D)) is strongly related
to the minimal number of commutators needed to express an element of the derived
group of the division ring D. The reader interested by this topics can consult the
recent paper Gvozdevsky [7] and the bibliography mentioned there.

The other class we need to look at for computing the ∗-diameter in matrix rings
over divison rings is the class of singular matrices. This is the purpose of the
following proposition. We have already use the fact that any singular matrix with
entries in a division ring D can be presented as a product of idempotent matrices.
In fact, we can be a bit more precise: any singular matrix A ∈ Mn(D) is a product
of conjugates of the idempotent matrix E = diag(1, . . . , 1, 0) (cf. [8]). This will be
used in the proof of the statement (ii) of the following proposition.

Proposition 4.11. (i) Let F 2 = F ∈ Mn(D) be of rank k. Then d∗(F, 0) ≤
⌈n/(n− k)⌉.
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(ii) Let A,B ∈ Mn(D) be two singular matrices, and let A (respectively, B) be
a product of k ≥ 1 (respectively, l ≥ 1) matrices similar to E = diag(1, . . . , 1, 0).
Then d∗(A,B) ≤ k + l.

(iii) diam∗({̂0}) ≤ 2n.

Proof. (i) F is similar to any diagonal matrix having k elements 1 and n−k elements
0 on the diagonal. In order to cover the n positions on the diagonal with strips of
zeros of length n − k, we need at most l := ⌈n/(n − k)⌉ strips. For i = 1, . . . , l,
let Pi ∈ GLn(D) be such that PiFP−1

i is a diagonal matrix with n − k zeros on
the diagonal occupying the positions from (i − 1)(n − k) + 1 till min{i(n − k), n}
positions along the diagonal (and 1’s in the remaining places). We thus get

F = F l ∗∼1 P1FP−1
1 F l−1

∗∼1 P1FP−1
1 P2FP−1

2 F l−2

∗∼1 P1FP−1
1 P2FP−1

2 P3FP−1
3 F l−3

∗∼1

...
∗∼1 P1FP−1

1 · · ·PlFP−1
l = 0,

Where the last equality is due to the fact that all the positions along the diagonal
appear to have a zero in at least one of the factors PiFP−1

i . From this, we indeed
obtain that d∗(F, 0) ≤ l.

(ii) By hypothesis, we know that there exist invertible matrices P1, . . . , Pk ∈
GLn(D) and Q1, . . . , Ql ∈ GLn(D) such that

A = P1EP−1
1 P2EP−1

2 · · ·PkEP−1
k ,

and
B = Q1EQ−1

1 Q2EQ−1
2 · · ·QlEQ−1

l .

This immediately gives the following paths between A, B, and E:

(1)

A
∗∼1 P2EP−1

2 P3 · · ·PkEP−1
k E

∗∼1 P3EP−1
3 P4 · · ·PkEP−1

k E2

∗∼1

...
∗∼1 PkEP−1

k Ek−1 ∼1 Ek = E.

A similar path is linking B and E. This leads to d∗(A,B) ≤ k + l.
(iii) Assume that A ∈ Mn(D) is singular. Then there exist invertible matrices

P1, . . . , Pk ∈ GLn(D) such that A = P1NP−1
1 P2NP−1

2 · · ·PkNP−1
k , where N :=∑n−1

i=1 Ei,i+1. Now, one may consider the following cases:

Case 1. k < n. Then, as in the proof of part (ii) above (cf. equations (1)), we
have d∗(A,Nk) ≤ k. Since the nilpotent index of Nk is n − k, Theorem 3.7 in [1]
shows that dc(N

k, 0) ≤ n− k − 1, and by virtue of d∗(N
k, 0) ≤ dc(N

k, 0), we gain
d∗(N

k, 0) ≤ n− k − 1. This gives rise to

d∗(A, 0) ≤ d∗(A,Nk) + d∗(N
k, 0) = k + (n− k − 1) = n− 1.
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Case 2. k ≥ n. Then, as in the proof of part (ii) above, we have

A
∗∼n Pn+1NP−1

n+1Pn+2 · · ·P−1
k Nn = 0.

This shows that d∗(A, 0) ≤ n.

If A,B ∈ {̂0}, we then have d∗(A,B) ≤ d∗(A, 0)+d∗(0, B) ≤ 2n, as claimed. □

We end the paper with some considerations on the structure of upper triangular
matrix rings. Recall that a strictly upper triangular matrix is an upper triangular
matrix having 1’s along the diagonal and 0’s under it, i.e., a matrix A = [ai,j ] such
that ai,j = 0 for all i ≥ j and aii = 1. We denote the set of all n× n strictly upper
triangular matrix over a ring R by Un(R).

Let us recall that, for a ring R and n ∈ N, we denote Nn(R) as the set of elements
of R that are nilpotent of index n and that a ring R is called semi-commutative if,
for a, b ∈ R, whenever ab = 0 we have aRb = 0.

Theorem 4.12. Let R be a ring. Then the following statements hold:

(i) If R is semi-commutative, then, for each i ∈ N, we have {0}∗i ⊆ N2i(R).
In particular, {0}∗ ⊆ N(R).

(ii) For any strictly upper triangular matrix U ∈ Mn(R), we have

(a) U ∈ {̂0}n−1 ⊆ {̂0} and U ∈ {0}∗n−1 ⊆ {0}∗.
(b) diam∧(Un(R)) ≤ 2(n− 1) and diam∗(Un(R)) ≤ 2(n− 1) for all n ≥ 2.

Proof. (i) We argue by induction on i. Let i = 1. We show that {0}∗1 ⊆ N2(R).

Pick an arbitrary element z ∈ {0}∗1. This implies that z
∗∼1 0, and hence there

exist elements a1, a2, a3 ∈ R such that z = a1a2a3 and 0 = a1a3a2. Since R is
semi-commutative, one obtains a1Ra3Ra2R = (0). This leads to z2 = 0, that is,
z ∈ N2(R). hence the claim is true for the case i = 1. Now, suppose, inductively,
that i > 0 and that the result has been shown for all values less than i + 1, in

particular, {0}∗i ⊆ N2i(R). Let z ∈ {0}∗i+1. This means that z
∗∼1 y

∗∼i 0 for some

y ∈ R. Since y ∈ {0}∗i , the induction hypothesis gives that y2
i

= 0. In addition, it

follows from z
1∼ y that there exist elements a1, a2, a3 ∈ R such that z = a1a2a3 and

y = a1a3a2. On account of R is semi-commutative, one can conculde from y2
i

= 0

that (a1Ra3Ra2R)2
i

= (0). This gives rise to z2
i+1

= 0, and thus z ∈ N2i+1(R).
This completes the inductive step, and so the claim has been proven by induction.

To establish the last assertion, it is enough to observe that {0}∗ =
⋃

i≥0{0}∗i and

N(R) =
⋃

n≥1 Nn(R).

(ii) We first show (a). According to [1, Proposition 3.1], for any strictly upper

triangular matrix U ∈ Mn(R), we have U ∈ {0}n−1 ⊆ {0}. Now, the claim can be

deduced based on the facts {0}n−1 ⊆ {0}∗n−1 and {0}n−1 ⊆ {̂0}n−1.
To demonstrate (b), fix n ≥ 2, and let A and B be two arbitrary elements

in Un(R). It follows from part (a) that U ∈ {0}∗n−1 ⊆ {0}∗ (respectively, U ∈
{̂0}n−1 ⊆ {̂0}). Thus, one can conclude that A

n−1∼ 0
n−1∼ B (respectively,

A∼̂n−10∼̂n−1B). We therefore get

diam∗(Un(R)) ≤ 2(n− 1) (respectively, diam∧(Un(R)) ≤ 2(n− 1)).

This completes the proof. □
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